Orders of magnitude (temperature)
Appearance
(Redirected from 1 E15 K)
This article needs additional citations for verification. (February 2025) |
![]() |
Range of minimum–maximum actual–theoretical temperatures
[edit]Factor | Multiple | Negative thermodynamic temperatures[a] | Type |
---|---|---|---|
10−9 | − nK | Artificial (A) | |
10−12 | −100 pK | nuclear spin temperature of −750 pK using rhodium.[4] | A |
Absolute zero[5][6] | |||
0 | N/A |
| |
Positive temperatures | |||
10−12 | 10s–100s pK |
|
A |
10−9 | 10–100 nK | A | |
10−6 | 1μK |
|
|
10−3 | 1–100s mK |
|
|
1 | 1 K |
|
|
101 | 10 K |
|
|
102 | 100 K |
See detailed list below |
|
103 | 1-10 kK |
|
|
104 | 10-100s kK |
|
|
106 | 1–100s MK |
|
|
109 | 1–100s GK |
|
|
1012 | 0.1–100s TK |
|
|
1015 | 0.1-1 PK |
|
|
1018 | EK | ||
1021 | ZK | ||
1024 | 1 YK |
|
|
1027 | 1 RK |
|
|
1030 | 1 QK | ||
1032 | 100 QK |
|
|
1033 | 1000 QK |
|
|
10290 | 10260 QK |
Detailed list for 100 K to 1000K
[edit]Kelvin | Degrees Celsius |
Degrees Fahrenheit |
Condition |
---|---|---|---|
100 K | −173.15 °C | −279.67 °F | |
133 K | −140 °C | −220 °F |
|
133 K to 163 K | −140 to −110 °C | −220 to −160 °F |
|
163 K | −110 °C | −166 °F |
|
165 K | −108 °C | −163 °F |
|
175.4 K | −97.8 °C | −144 °F |
|
183.7 K | −89.5 °C | −129.1 °F |
|
183.9 K | −89.2 °C | −128.6 °F |
|
192 K | −81 °C | −114 °F |
|
193 to 203 K | −80 to −70 °C | −112 to −94 °F |
|
194.6 K | −78.5 °C | −109.3 °F |
|
203.55 K | −69.6 °C | −93.3 °F | Coldest officially recorded air temperature in the Northern Hemisphere at Klinck AWS, Greenland (Denmark) on 1991-12-22[43] |
205.5 K | −67.7 °C | −89.9 °F | Coldest officially recorded air temperature on the Eurasian continent at Oymyakon, USSR on 6 February 1933[44][full citation needed] |
210 K | −63 °C | −80 °F |
|
214.9 K | –58.3 °C | –72.9 °F |
|
223.15 K | −50 °C | −58 °F |
|
224.8 K | −48.4 °C | −55.0 °F |
|
225 K | −48 °C | −55 °F |
|
233.15 K | −40 °C | −40 °F |
|
234.3 K | −38.83 °C | −37.89 °F |
|
240.4 K | −32.8 °C | −27.0 °F | |
246 K | −27 °C | −17 °F |
|
249 K | –24 °C | –11 °F |
|
249.3 K | –23.9 °C | –11.0 °F | |
250 K | –23 °C | –9 °F |
|
255.37 K | –177⁄9 °C | 0 °F |
|
255 K | –18 °C | 0 °F |
|
256 K | –17 °C | 1 °F |
|
256 K | –17 °C | 2 °F |
|
257 K | –16 °C | 3 °F |
|
262 K | −11 °C | 12 °F |
|
263.15 K | –10 °C | 14 °F |
|
265 K | –8 °C | 18 °F |
|
265.8 K | –7.2 °C | 19 °F |
|
267 K | –6 °C | 21 °F |
|
271.15 K | −2 °C | 28.4 °F | |
273.14 K | -0.01 °C | 31.98 °F |
|
273.15 K | 0.00 °C | 32.00 °F |
|
273.16 K | 0.01 °C | 32.02 °F |
|
276 K | 3 °C | 37 °F |
|
277 K | 3.85 °C | 39 °F |
|
277.13 K | 3.98 °C | 39.16 °F |
|
279.8 K | 6.67 °C | 44 °F |
|
283.2 K | 10 °C | 50 °F |
|
286.9 K | 12.7 °C | 54.9 °F |
|
287.6 K | 14.44 °C | 58 °F |
|
288 K | 15 °C | 59 °F |
|
291.6 K | 18.4 °C | 65.1 °F |
|
294 K | 21 °C | 70 °F |
|
296 K | 23 °C | 73 °F |
|
297 K | 24 °C | 75 °F |
|
298 K | 25 °C | 77 °F |
|
300 K | 27 °C | 81 °F | |
302.9 K | 29.8 °C | 85.6 °F |
|
303.15 K | 30 °C | 86 °F |
|
304 K | 31 °C | 88 °F |
|
307 K | 34 °C | 93 °F | |
307.6 K | 34.4 °C | 93.9 °F |
|
308 K | 35 °C | 95 °F |
|
309.5 K | 36.4 °C | 97.5 °F |
|
311.03 K | 37.87 °C | 100.2 °F |
|
311.8 K | 38.6 °C | 101.5 °F |
|
313.15 K | 40 °C | 104 °F |
|
315 K | 42 °C | 108 °F |
|
317.6 K | 44.44 °C | 112 °F |
|
319.7 K | 46.5 °C | 115.7 °F |
|
321.45 K | 48.3 °C | 119 °F | World's hottest air temperature recorded while raining, at Imperial, California, USA on July 24, 2018[66] |
322.1 K | 48.9 °C | 120.0 °F | |
323.14 K | 49.99 °C | 121.99 °F |
|
323.9 K | 50.7 °C | 123.3 °F |
|
329.87 K | 56.7 °C | 134.1 °F |
|
333.15 K | 60 °C | 140 °F |
|
336 K | 63 °C | 145.4 °F |
|
342 K | 69 °C | 157 °F |
|
343.15 K | 70 °C | 158 °F |
|
350 K | 77 °C | 170 °F |
|
351.52 K | 78.37 °C | 173.07 °F |
|
353.15 K | 80 °C | 176 °F |
|
355 K | 82 °C | 180 °F |
|
355.6 K | 82.4 °C | 180.3 °F |
|
366 K | 93 °C | 200 °F |
|
367 K | 94 °C | 201 °F |
|
371 K | 98 °C | 209 °F |
|
373.13 K | 99.98 °C | 211.97 °F |
|
380 K | 107 °C | 225 °F |
|
388 K | 115 °C | 239 °F |
|
400 K | 127 °C | 260 °F |
|
433.15 K | 160 °C | 320 °F |
|
450 K | 177 °C | 350 °F |
|
453.15 K | 180 °C | 356 °F |
|
483 K | 210 °C | 410 °F | |
491 K | 218 °C | 425 °F |
|
519 K | 246 °C | 475 °F |
|
522 K | 249 °C | 480 °F |
|
525 K | 252 °C | 485 °F | |
538 K | 265 °C | 510 °F |
|
574.5875 K | 301.4375 °C | 574.5875 °F | Fahrenheit and Kelvin temperature scales coincide |
600.65 K | 327.5 °C | 621.5 °F |
|
647 K | 374 °C | 705 °F |
|
693 K | 419 °C | 787 °F |
|
723 K | 450 °C | 842 °F |
|
738 K | 465 °C | 870 °F |
|
749 K | 476 °C | 889 °F |
|
773.15 K | 500 °C | 932 °F |
|
798 K | 525 °C | 977 °F |
|
858 K | 585 °C | 1085 °F | Kindling point of hydrogen[76] |
933.47 K | 660.32 °C | 1220.58 °F |
|
1000 K | 726.85 °C | 1340.33 °F |
SI multiples
[edit]Submultiples | Multiples | ||||
---|---|---|---|---|---|
Value | SI symbol | Name | Value | SI symbol | Name |
10−1 K | dK | decikelvin | 101 K | daK | decakelvin |
10−2 K | cK | centikelvin | 102 K | hK | hectokelvin |
10−3 K | mK | millikelvin | 103 K | kK | kilokelvin |
10−6 K | μK | microkelvin | 106 K | MK | megakelvin |
10−9 K | nK | nanokelvin | 109 K | GK | gigakelvin |
10−12 K | pK | picokelvin | 1012 K | TK | terakelvin |
10−15 K | fK | femtokelvin | 1015 K | PK | petakelvin |
10−18 K | aK | attokelvin | 1018 K | EK | exakelvin |
10−21 K | zK | zeptokelvin | 1021 K | ZK | zettakelvin |
10−24 K | yK | yoctokelvin | 1024 K | YK | yottakelvin |
10−27 K | rK | rontokelvin | 1027 K | RK | ronnakelvin |
10−30 K | qK | quectokelvin | 1030 K | QK | quettakelvin |
See also
[edit]Notes
[edit]- ^ Such a temperature, while negative as a scalar value, correspond to thermodynamic states hotter than every positive temperature[1] – even infinite temperature[2]
- ^
- requiring the excitation temperature (Tex) to be less than 2.8 K (Tbb).
- This is because the antenna temperature measured through our “on source–off source” observations is an excess over Tbb and is equal to I(ON) - I(OFF)
- with I(ON) (λ2/2k) [B(Tbb) e-τ) + B(Tex)(1 - e-τ)],
- and I(OFF) (λ2/2k)B(Tbb),
- where τ is the optical depth, and B is the Planck blackbody function.
- Hence, if Tex < Tbb, and τ >> 1, then I(ON) - I(OFF) (λ2/2k) [B(Tex) - B(Tbb)] < 0.[20]
- ^ The concept: "boomerang" is a belonging/possession of native tribes of Australia.[21]
- ^ Most ordinary human activity takes place at temperatures of this order of magnitude. Circumstances where water naturally occurs in liquid form are shown in light grey.
References
[edit]- ^ a b Braun, S.; Ronzheimer, J. P.; Schreiber, M.; Hodgman, S. S.; Rom, T.; Bloch, I.; Schneider, U. (4 January 2013). "Negative Absolute Temperature for Motional Degrees of Freedom". Science. 339 (6115): 52–55. arXiv:1211.0545. Bibcode:2013Sci...339...52B. doi:10.1126/science.1227831. PMID 23288533 – via Zeeya Merali: doi.org/10.1038/nature.2013.12146.
- ^ "Negative Absolute Temperatures Does that mean that temperature is circular?". Quantum Optics Group. Ludwig-Maximilians Universität Munich. Retrieved 20 February 2025.
How do you measure temperature?...we take images of our atoms with a CCD camera...We compare the distribution of our atoms with the theoretically expected distributions. The distribution that fits best gives us the temperature of the atoms.
- ^ "A temperature below absolute zero". www.mpg.de. Max-Planck-Gesellschaft. 4 January 2013. Archived from the original on 9 March 2025. Retrieved 18 February 2025.
- ^ Lounasmaa, Olli V.; Hakonen, Pertti; Nummila, Kaj; Vuorinen, Reko; Martikainen, Juha (2 February 1994). "Negative nanokelvin temperature in the nuclear spin systems of silver and rhodium metals". Physica B: Condensed Matter. 194-196 Part 1: 291–292. Bibcode:1994PhyB..194..291L. doi:10.1016/0921-4526(94)90475-8 – via Abraham & Penrose (November 25, 2016) www.macs.hw.ac.uk/~oliver/PREpaper.pdf.
- ^ a b Barton, Allan F.M. (1997). "5 Thermodynamic Matter". States of Matter. Bristol and Philadelphia: Institute of Physics Publishing. p. 110. ISBN 9780750304184. Retrieved 17 February 2025 – via Google Books.
- ^ a b Angelo Jnr., Joseph A. (April 2020). "Very Cold Matter". Extreme States of Matter. New York: Infobase. p. 112. ISBN 9781438195834. Retrieved 17 February 2025 – via Google Books.
- ^ Deppner, Christian; Herr, Waldemar; Cornelius, Merle; Stromberger, Peter; Sternke, Tammo; Grzeschik, Christoph; Grote, Alexander; Rudolph, Jan; Herrmann, Sven; Krutzik, Markus; Wenzlawski, André (2021-08-30). "Collective-Mode Enhanced Matter-Wave Optics". Physical Review Letters. 127 (10): 100401. Bibcode:2021PhRvL.127j0401D. doi:10.1103/PhysRevLett.127.100401. ISSN 0031-9007. PMID 34533345. S2CID 237396804.
- ^ a b De Marco, Luigi; Valtolina, Giacomo; Matsuda, Kyle; Tobias, William G.; Covey, Jacob P.; Ye, Jun (17 January 2019). "A degenerate Fermi gas of polar molecules". SCIENCE. 363 (6429): 853–856. doi:10.1126/science.aau7230. PMID 30655445.
- ^ Leanhardt, A. E.; Pasquini, T. A.; Saba, M.; Schirotzek, A.; Shin, Y.; Kielpinski, D.; Pritchard, D. E.; Ketterle, W. (12 September 2003). "Cooling Bose-Einstein Condensates Below 500 Picokelvin". Science. 301 (5639). MIT: 1513–1515. doi:10.1126/science.1088827. PMID 12970559 – via Isabella Dumé Physics World: web.archive.org/web/20120402094614/http://physicsworld.com/cws/article/news/18214.
- ^ Anderson, M. H.; Ensher, J. R.; Matthews, M. R.; Wieman, C. E.; Cornell, E. A. (14 July 1995). "Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor". SCIENCE. 269 (5221). Joint Institute for Laboratory Astrophysics (JILA): Abstract. doi:10.1126/science.269.5221.198 – via www.cibtech.org/J-PHYSICS-MATHEMATICAL-SCIENCES/PUBLICATIONS/2015/Vol-5-NO-3/01-JPMS-001-(SEP)-THOMAS-CRITICAL.pdf (INTRODUCTION) & iask.ai/?mode=question&q=what+was+the+first+Bose-Einstein+Condensation+made%2Fcreated (ai verified: bingweb.binghamton.edu/~suzuki/ModernPhysics/31_BEC_in_alkali_atoms.pdf).
- ^ Davis, K. B.; Mewes, M. -O.; Andrews, M. R.; van Druten, N. J.; Durfee, D. S.; Kurn, D. M.; Ketterle, W. (27 November 1995). "Bose-Einstein Condensation in a Gas of Sodium Atoms". Phys. Rev. Lett. 75 (3969). aps.org: 3969–3973. doi:10.1103/PhysRevLett.75.3969 – via Silke Ospelkaus-Schwarzer ediss.sub.uni-hamburg.de/bitstream/ediss/1637/1/silke_ospelkaus_dissertation.pdf p.1.
- ^ Ospelkaus-Schwarzer, Silke (21 December 2006). "Chapter 1 Introduction". Quantum Degenerate Fermi-Bose Mixtures of 40K and 87Rb in 3D Optical Lattices (PDF). Hamburg: uni-hamburg.de – via jila.colorado.edu/sites/default/files/2019-05/goldwin_thesis.pdf [JM Goldwin 2005 University of Colorado-x-Table 3.1/95: thesis director: Deborah S. Jin].
- ^ a b Enss, Christian; Hunklinger, Siegfried (2005). "Superfluid 3HE". Low-temperature physics. Berlin Heidelberg: Springer-Verlag. doi:10.1007/3-540-26619-4_4. ISBN 3-540-23164-1. Retrieved 1 April 2025.
superfluid 3He was finally discovered in 1971. Osheroff, Richardson and Lee observed clear indications for two phase transitions in 3He at temperatures around 2mK" (sic) "in experiments using a Pomeranchuk cell
- ^ a b Soda, Toshio; Yamazaki, Koji (February 1974). "On the Superfluid Phases of Liquid 3He". Progress of Theoretical Physics. 51 (2): Abstract. doi:10.1143/PTP.51.327 – via iask.ai/?mode=question&options[detail_level]=detailed&q=Osheroff+DD%2C+Gully+WJ%2C+Richardson+RC%2C+Lee+DM+1972.+Phys.+Rev.+Lett.+29%3A920 using W.P. Halperin Superfluid 3He in Aerogel Annual Review of Condensed Matter Physics Volume 10, 2019 search: iask.ai: "2. Osheroff DD, Gully WJ, Richardson RC, Lee DM 1972. Phys. Rev. Lett. 29:920".
- ^ a b Lounasmaa, O.V. (October 1974). "3HE-Two Superfluid Phases" (PDF). europhysics news BULLETIN OF THE EUROPEAN PHYSICAL SOCIETY. 5 (10). Helsinki University of Technology.
- ^ Osheroff, D. D.; Richardson, R. C.; Lee, D. M. (3 April 1972). "Evidence for a New Phase of Solid He3". Phys. Rev. Lett. 28 (885). Cornell University. doi:10.1103/PhysRevLett.28.885 – via Enss & Hunklinger.
indicate the existence of a new phase in solid He3 below 2.7 mK of a fundamentally different nature
- ^ Jin, D.S.; Regal, C.C. (18 April 2008). "Fermi Gas Experiments". In Inguscio, M.; Ketterle, W.; Salomon, C. (eds.). Proceedings of the International School of Physics "Enrico Fermi" COURSE CLXIV Ultra-cold Fermi Gases. AMSTERDAM OXFORD TOKYO WASHINGTON DC: IOS Press & Società Italiana di Fisica. p. 3. ISBN 1607503182. Retrieved 1 April 2025.
[13]-p.47:OSHEROFF, RICHARDSON, LEE (1972)
- ^ Ouellet, Jonathan (14 October 2014). "The Coldest Cubic Meter in the Known Universe". arXiv:1410.1560.
- ^ Allen and Misener; Kapitza (1938). Regal, C.A.; Jin, D.S. (2007). "Introduction". Experimental Realization of the BCS-BEC Crossover with a Fermi Gas of Atoms. Advances In Atomic, Molecular, and Optical Physics. Vol. 54. JILA: ELSEVIER. pp. 1–79. doi:10.1016/S1049-250X(06)54001-7. ISBN 978-0-12-003854-1.
- ^ a b Sahai, Raghvendra; Nyman, Lars-Åke (1997). "The Boomerang Nebula: The Coolest Region of the Universe?". The Astrophysical Journal. 487 (2): L155 – L159. Bibcode:1997ApJ...487L.155S. doi:10.1086/310897. hdl:2014/22450.
L156: We have measured a 9 mK upper limit (3 σ) on continuum emission at 89.2 and 145.6 GHz toward the Boomerang Nebula, which is much smaller than the negative temperatures seen in the CO and 13CO J 1–0 spectra, so these must result from absorption of the microwave background, requiring the excitation temperature (Tex) to be less than 2.8 K (Tbb). 3. A TWO–SHELL MODEL In shell 2 (R1,o < r < R2), Tkin < 2.8 K
- ^ "Defining Moments in Australian History Earliest evidence of the boomerang in Australia". www.nma.gov.au. Lawson Crescent Acton Peninsula, Canberra: National Museum Australia. Retrieved 29 March 2025.
Aboriginal and Torres Strait Islander people should be aware this website contains images, voices and names of people who have died.
- ^ Sahai, R.; Vlemmings, W. H. T.; Huggins, P.J.; Nyman, L.-Å.; Gonidakis, I. (10 November 2013). "ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA". The Astrophysical Journal. 777 (92): 1. arXiv:1308.4360. doi:10.1088/0004-637X/777/2/92.
- ^ Savvatimskii, Aleksandr I (2003). "Melting point of graphite and liquid carbon (Concerning the paper 'Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures' by E. I. Asinovskii, A. V. Kirillin, and A. V. Kostanovskii)". Physics-Uspekhi. 46 (12): 1295–1303. Bibcode:2003PhyU...46.1295S. doi:10.1070/PU2003v046n12ABEH001699. S2CID 250746507.
- ^ Yang, C. C.; Li, S. (2008). "Size-Dependent Temperature-Pressure Phase Diagram of Carbon". Journal of Physical Chemistry C. 112 (5): 1423–1426. doi:10.1021/jp076049+.
- ^ David R. Williams (9 May 2024). "Solar Atmosphere". nssdc.gsfc.nasa.gov. NSSDCA, Mail Code 690.1 NASA Goddard Space Flight Center Greenbelt, MD 20771. Archived from the original on 6 Aug 2024. Retrieved 1 April 2025.
- ^ Mullen, P. D.; Woods, C. N. (8 December 2015). "Determining the Suns Surface Temperature With iPhone" (PDF). Department of Physics and Astronomy, University of Georgia, Athens, Georgia.
- ^ Abdelsalam, Tarek I.; Tian, Zhao; Robinson, Adam (1 May 2023). "Directly irradiated liquid metal film in an ultra-high temperature solar cavity receiver. Part 1: Concepts and a quasi-steady-state analysis". Solar Energy. 255: 2.1. Solar concentration. doi:10.1016/j.solener.2023.03.047.
- ^ a b Morozov, A N (2017). "Скрипкин Алексей Владимирович Calculation of the Intensity of Physical Time Fluctuations Using the Standard Solar Model and its Comparison with the Results of Experimental Measurements". IOP Conf. Series: Journal of Physics: Conf. Series (9th Russian National Conference on Irreversible Processes in Nature and Technics (9RNC-IPNT) 25–27 January 2017). 918 (012008). Bauman Moscow State Technical University: IOP Publishing Ltd: 3. Calculation of the intensity of physical time fluctuations during the production of entropy by irreversible processes (16): p.4 ("5830") 6. Calculation of the intensity of physical time fluctuations due to the Earth's thermal radiation (28): p.8. doi:10.1088/1742-6596/918/1/012008.
- ^ Chitta, L. P.; Smitha, H. N.; Solanki, S. K. (30 April 2020). "Solar Photosphere". Oxford Research Encyclopedia of Physics. Max Planck Institute for Solar System Research: Oxford University Press and the American Institute of Physics. Archived from the original on 1 April 2025.
- ^ Correa, A. A.; Bonev, S. A.; Galli, G. (2006). "Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory". Proceedings of the National Academy of Sciences. 103 (5): 1204–1208. Bibcode:2006PNAS..103.1204C. doi:10.1073/pnas.0510489103. PMC 1345714. PMID 16432191.
- ^ Wang, Xiaofei; Scandolo, Sandro; Car, Roberto (2005). "Carbon Phase Diagram from Ab Initio Molecular Dynamics". Physical Review Letters. 95 (18): 185701. Bibcode:2005PhRvL..95r5701W. doi:10.1103/PhysRevLett.95.185701. PMID 16383918. S2CID 15373344.
- ^ Gerald I. Kerley and Lalit Chhabildas, "Multicomponent-Multiphase Equation of State for Carbon", Sandia National Laboratories (2001)
- ^ Glosli, James; Ree, Francis (1999). "Liquid-Liquid Phase Transformation in Carbon". Physical Review Letters. 82 (23): 4659–4662. Bibcode:1999PhRvL..82.4659G. doi:10.1103/PhysRevLett.82.4659.
- ^ Man Chai Chang; Ryong, Ryoo; Mu Shik Jhon (1985). "Thermodynamic properties of liquid carbon". Carbon. 23 (5): 481–485. Bibcode:1985Carbo..23..481M. doi:10.1016/0008-6223(85)90083-1.
- ^ Bestenlehner, Joachim M.; Crowther, Paul A.; Caballero-Nieves, Saida M.; Schneider, Fabian R. N.; Simón-Díaz, Sergio; Brands, Sarah A.; De Koter, Alex; Gräfener, Götz; Herrero, Artemio; Langer, Norbert; Lennon, Daniel J.; Maíz Apellániz, Jesus; Puls, Joachim; Vink, Jorick S. (2020). "The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136". Monthly Notices of the Royal Astronomical Society. 499 (2): 1918. arXiv:2009.05136. Bibcode:2020MNRAS.499.1918B. doi:10.1093/mnras/staa2801.
- ^ Massey, Philip; Bresolin, Fabio; Kudritzki, Rolf P.; Puls, Joachim; Pauldrach, A. W. A. (2004). "The Physical Properties and Effective Temperature Scale of O-Type Stars as a Function of Metallicity. I. A Sample of 20 Stars in the Magellanic Clouds". The Astrophysical Journal. 608 (2): 1001–1027. arXiv:astro-ph/0402633. Bibcode:2004ApJ...608.1001M. doi:10.1086/420766. S2CID 119373878.
- ^ "Highest man-made temperature". Guinness World Records. Jim Pattison Group. Retrieved 16 August 2015.
- ^ a b "Solar System Temperatures - NASA Science". science.nasa.gov. 15 February 2022. Retrieved 2023-10-20.
- ^ "Whole-Body Cryotherapy FAQs". Coyne Medical. 9 December 2020. Retrieved 2023-10-11.
- ^ Jestin Baby Mandumpal (2017). A Journey Through Water: A Scientific Exploration of The Most Anomalous Liquid on Earth. Bentham Science Publishers. p. 148. ISBN 9781681084237.
- ^ "New study explains Antarctica's coldest temperature". National Snow and Ice Data Center. 25 June 2018. Retrieved 5 May 2021.
- ^ a b National Research Council (US) Committee on Toxicology (1984). Read "Emergency and Continuous Exposure Limits for Selected Airborne Contaminants: Volume 2" at NAP.edu. doi:10.17226/690. ISBN 978-0-309-07774-3. PMID 25032441.
- ^ "Northern Hemisphere: Lowest Temperature". World Weather & Climate Extremes Archive. World Meteorological Organization. 21 June 2023. Retrieved 2024-01-06.
- ^ Weather Underground – Coldest Places on Earth
- ^ a b http://www.currentresults.com/Weather-Extremes/ Current Results – Worlds Hottest and Coldest Places
- ^ 'Snowball Earth' Scenario Plunged Our Planet Into Million-Year Winters
- ^ a b c d e f g h i j k l m n o Veganbaking.net – Fat and Oil Melt Point Temperatures http://www.veganbaking.net/tools/fat-and-oil-melt-point-temperatures
- ^ http://www.weathernotebook.org/transcripts/2001/02/07.html Archived 2013-11-06 at the Wayback Machine The Weather Notebook – 40 Below
- ^ a b c d e http://wmo.asu.edu/ ASU World Meteorological Organization – Global Weather & Climate Extremes
- ^ "Temperature Everest Summit". Himalayan Wonders. 30 July 2014. Retrieved 2023-10-11. (Temperature calculated by averaging monthly temperatures given in graph)
- ^ "Freezing and food safety". USDA. Archived from the original on 18 September 2013. Retrieved 6 August 2013.
- ^ "Can the ocean freeze? Ocean water freezes at a lower temperature than freshwater". NOAA. Archived from the original on July 6, 2020. Retrieved January 2, 2019.
- ^ Chester, Roy; Jickells, Tim (2012). Marine Geochemistry. Blackwell. ISBN 978-1-118-34907-6.
- ^ http://www.newton.dep.anl.gov/askasci/chem03/chem03265.htm Archived 2015-02-26 at the Wayback Machine U.S. Dept. of Energy – Office of Science – Oils and Low Temperature
- ^ http://www.esf.edu/efb/schulz/Limnology/mixing.html Archived 2018-08-23 at the Wayback Machine College of Environmental Science and Forestry – Thermal Stratification
- ^ Agence France Presse (2014-12-05). "Doctors hail miracle as toddler survives freezing conditions in pyjamas". The Guardian. Warsaw. Retrieved 2015-02-03.
- ^ "2-letni Adaś wyprowadzony z hipotermii. Światowe media donoszą o cudownym dziecku z Polski". Polskie Radio. 2015-12-05. Retrieved 2015-02-03.
- ^ "New record for Antarctic continent reported". World Meteorological Organization. Retrieved 7 February 2020.
- ^ https://www.climate.gov/news-features/climate-qa/whats-hottest-earths-ever-been What's the hottest Earth's ever been?
- ^ Rintamäki, Hannu (2007). "Human responses to cold". Alaska Medicine. 49 (2 Suppl): 29–31. PMID 17929604.
- ^ https://www.health.harvard.edu/staying-healthy/cold-out-why-you-need-to-wear-a-hat Harvard Health Publishing - Cold out? Why you need to wear a hat!
- ^ Harvard Health Publishing - Time to redefine normal body temperature? https://www.health.harvard.edu/blog/time-to-redefine-normal-body-temperature-2020031319173
- ^ http://people.rit.edu/hmm5837/320/project2/page4.html Archived 2013-11-12 at the Wayback Machine Rochester Institute for Technology – Random Cat Facts
- ^ http://www.jacuzzi.com/hot-tubs/hot-tub-blog/ideal-hot-tub-water-temperature/ Archived 2017-01-26 at the Wayback Machine. Finding The Ideal Hot Tub Temperature. Jacuzzi
- ^ http://faculty.washington.edu/chudler/clock.html Biological Rhythums
- ^ "Hottest Rain on Record? Rain Falls at 119°F in Imperial, California". www.wunderground.com. Retrieved 2024-07-26.
- ^ a b c "Antiscald Inc". Archived from the original on 2014-09-13. Retrieved 2014-09-12.
- ^ "Highest recorded temperature". Guinness World Records. 10 July 1913. Retrieved 20 August 2018.
- ^ http://science.howstuffworks.com/dictionary/chemistry-terms/boiling-info.htm HowStuffWorks – Boiling
- ^ Seckbach, Joseph; et al. (2013). Polyextremophiles – life under multiple forms of stress. Dordrecht: Springer. preface. ISBN 978-94-007-6487-3.
- ^ "Residential Dishwashers". National Sanitation Foundation. Retrieved on 26 May 2017. http://www.nsf.org/consumer-resources/health-and-safety-tips/home-product-appliance-tips/sanitizing-dishwasher/
- ^ http://www.nps.gov/deva/naturescience/weather-and-climate.htm National Park Service – Death Valley – Weather and Climate
- ^ http://www.ifa.hawaii.edu/research/Stars.shtml University of Hawaii – Institute for Astronomy
- ^ a b c International Fire Training Centre: Firefighter initial: aviation fuels and fuel tanks Archived 2018-02-19 at the Wayback Machine - International Fire Training Centre
- ^ Draper, John William (1847). "On the production of light by heat". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 30 (202). Taylor & Francis: 345–359. doi:10.1080/14786444708647190.
- ^ "Spontaneous ignition of hydrogen" (PDF). Health and Safety Executive. 2008.